Libsvm 3.17 demo

PRML (in Japanese), www.kameda-lab.org 2013/11/16

Java applet to run SVM on-line demo.

This is a part of libsvm 3.17 which I introduced in the class of PRML 2013, Grad. School of SIE, University of Tsukuba, Japan.

Original libsvm page

Examples of options: -s 0 -c 10 -t 1 -g 1 -r 1 -d 3
Classify a binary data with polynomial kernel (u'v+1)^3 and C = 10

options:
-s svm_type : set type of SVM (default 0)
0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates: whether to train a SVC or SVR model fro probability estimates, 0 or 1 (default 0)
-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)

The k in the -g option means the number of attributes in the input data.

Reference

Chih-Chung Chang and Chih-Jen Lin,
LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1--27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm


kameda[at]iit.tsukuba.ac.jp